Climate Change: Species distribution and geographical change

Reuven Yosef, Prof. Dept. of Life Sciences, Ben Gurion University of the Negev, Israel

Definitions

Global warming: the increase in Earth's average surface temperature due to rising levels of greenhouse gases.

Climate change: a long-term change (min. 30 yrs) in the Earth's climate (or of a region).

Bird Numbers 2007 "Monitoring for Conservation and Management"

17th International Conference of the European Bird Census Council

17-22 April 2007, Chiavenna (Italy)

Forecast climate change across Europe

 Projected change in annual mean temperature (2080s under HadCM3/B2)

 Projected change in annual precipitation (2080s under HadCM3/B2)

Future climate across Europe (2070-2099)

Growing Season Warmth

Species moving northward and uphill in UK

Hickling et al. 2006

Journal of Biogeography (J. Biogeogr.) (2015) 42, 976-988

Stacked species distribution models and macroecological models provide congruent projections of avian species richness under climate change

Trisha Distler $^{1,\star},$ Justin G. Schuetz 1, Jorge Velásquez-Tibatá 1 and Gary M. Langham 2

Diversity and Distributions, (Diversity Distrib.) (2014) 20, 1285-1295

A 40-year, continent-wide, multispecies assessment of relevant climate predictors for species distribution modelling

Morgane Barbet-Massin^{1,2*} and Walter Jetz¹

Breeding Distributions of North American Bird Species Moving North as a Result of Climate Change

ALAN T. HITCH* AND PAUL L. LEBERG Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-2451, U.S.A. Conservation Biology Volume 21, No. 2, 534–539 ©2007 Society for Conservation Biology DOI: 10.1111/j.1523-1739.2006.00609.x

LETTERS PUBLISHED ONLINE: 16 SEPTEMBER 2012 | DOI: 10.1038/NCLIMATE1688

Focus on poleward shifts in species' distribution underestimates the fingerprint of climate change

Jeremy VanDerWal^{1*}, Helen T. Murphy², Alex S. Kutt³, Genevieve C. Perkins³, Brooke L. Bateman^{1†}, Justin J. Perry³ and April E. Reside^{1,3}

Figure 4 Projected changes in summer species richness of North American birds from the 2000s to 2080s derived from stacked species distribution models (S-SDM) and macroecological models (MEM). Projections are made for three future emissions scenarios: low emissions (B2), moderate emissions (A1B) and high emissions (A2).

> Average potential range centroid displacements

	Biogeographic Element	Median initial azimuth (bearing in degrees)	Mean displacemen t (km)	Median displacemen t (km)
	Maritime-Insular	0	448	443
	Southern	24	632	577
	Southern Nemoral	3	617	599
	Sub-Continental Nemoral	357	500	458
Median bearings for these	Nemoral	357	392	377
groups vary only between	European	352	282	264
north and north-east	Boreo-Nemoral	3	566	544
	Continental Nemoral	6	574	565
Mean displacement is	Sub-Continental Boreo-Nemoral	9	782	789
approximately 500km!	Continental Boreo-Nemoral	20	573	563
	Boreal	28	545	565
	Northern Nemoral	4	483	384
	Oceanic Boreal	12	555	442
	Arctic-Boreal	15	579	567
	Arctic	26	446	427
	Northern	10	663	656
	North European	347	336	298
	Northern Maritime	4	573	438
	Arctic–Maritime	43	588	557

Best-case and worst-case scenarios

We calculate a best case (all new area occupied) and a worst case (overlap only occupied) scenario of range shift for each species

European birds and future climate

Red Kite: Central European

European birds and future climate

Dotterel: Northern European

Potential impacts on species richness

1 sp. 1 sp. I < no. spp. ≤ 20</p> I < no. spp. ≤ 20</p> 20 < no. spp. ≤ 50 20 < no. spp. ≤ 50</p> 50 < no. spp. ≤ 100</p> 50 < no. spp. ≤ 100</p> 100 < no. spp. ≤ 125 100 < no. spp. ≤ 125 125 < no. spp. ≤ 150</p> 125 < no. spp. ≤ 150</p> no. spp. > 150 no. spp. > 150

Assuming perfect dispersal

Observed current distribution

Simulated late 21st century distribution

(Mean obs = 120 spp.; mean sim = 123 spp.)

(Best case, mean = 115 spp.; *worst* = 76 *spp*.)

>Other applications (1)To help explain trends

Jackdaw

Predicted 2070 range

Current range

Kites (Milvus spp.) wintering on Crete

C. T. PANTER 01.2, S. XIROUCHAKIS3, Š. DANKO4, H. MATUŠÍK1, P. PODZEMNÝ1, S. OVČIARIKOVÁ¹, & I. LITERÁK^{1*}

¹Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic, ²Ecology, Conservation (School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighto Sciences & Engineering, University of Crete, University Campus (Knosos), Society/BirdLife Slovakia, Michalovce, Slovakia

Slovak Raptor Journal 2017, 11: 0-0. DOI: 10.1515/srj-2017-0001. © Raptor Protection of Slovakia (RPS)

J. Raptor Res. 29(2):127-134 © 1995 The Raptor Research Foundation, Inc.

SPRING 1994 RAPTOR MIGRATION AT EILAT, ISRAEL

REUVEN YOSEF International Birding Center, P.O. Box 774, Eilat 88000, Israel

Common wintering of black kites (Milvus migrans migrans) in Greece, and new data on their wintering elsewhere in Europe

Bežné zimovanie hají tmavých (Milvus migrans migrans) v Grécku a nové údaje o ich zimovaní inde v Európe

Ivan LITERÁK, David HORAL, Haralambos ALIVIZATOS & Hynek MATUŠÍK

Black kites were the only species counted in considerably lower numbers in the 1994 survey compared to previous studies. The 15659 kites seen is well below the minimum of 24728 seen in 1986. In the 1994 survey, they comprised only 1.5% of total raptors observed in comparison to 2-4.6% in previous years. Peak migration, when 1000-2000 kites per day were seen, was spread over 2 wk—22 March to 2 April. Although seen throughout late April and May, appearance was irregular with many days having no kites at all.

ZooKeys 31: 193-210 (2009) doi: 10.3897/zookeys.31.107 www.pensoftonline.net/zookeys

Spring bird migration phenology in Eilat, Israel

Reuven Yosef¹, Mikhail Markovets^{1,2}

I International Birding and Research Centre in Eilat, Eilat, Israel 2 Zoological Institute RAS, St. Petersburg 199034, Russia

Corresponding author: Reuven Yosef (ryosef@eilatcity.co.il)

Figure 1. Data of first capture of 34 species of birds in Eilat in 1984–2003.

