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SUMMARY

Importance of bearing-load in aercengines and its prediction
in the event of “Bird-Strike” is dealt with in this paper. A
short summary of analytical results obtained for a critical
flight condition is presented to highlight the utility of
Impact Software in relation to engine bearing design.
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INTRODUCTION

Many critical failure modes of aercengines necessitate
minimisation of axial thrust loads on engine bearings,
particularly in the case of overhung fan rotor bearings.
(Fig.l) It is a good design practice to ensure that the
direction of these thrust loads on the bearings, due to
differential gas pressures inside the engine, do not reverse
at any flight phase. While this can be complied with, for
almost all engine configurations and flight phases,
transient reversal of these axial loads in the event of bird
strikes on engine rotor components becomes extremely
difficult to handle. These reversals affect the integrity
and reliability of bearing locators and shaft locking
mechanisms. In extreme cases, these transient loads could
result in bearing failures, disc overspeeding, rotor/stator
blade rub and spline joint overloading. A realistic, if not
most accurate, assessment of these transient axial loads on
the low pressure main shaft is an important analysis and
design task, for ensuring bearing integrity and minimising
other secondary failure modes.

The axial 1load experienced by the bearings due to ‘'Bird
Strike’ is a direct function of engine rotational speed,
aircraft forward speed, bird shape, its orientation wvis-a-
vis engine axis and, more importantly, is dependent on the
number of fan blades impacted and the thickness/ camber
variation of the blades along its span from tip to hub.
Fig.2 is a standard published and well known concept of the
bird-debris distribution and resultant force wvectors on
rotating blades. Fig.3 explains the influence of bird shape
on the peak impact force on rotor blade, assumed to be rigid
and the bird material to be semi-solid or semi~fluid in
behaviour. In practice, however, the assumed bird
characteristics is not strictly valid and the rotating blade
indeed deforms as a low aspect-ratio cantilever plate of
varying thickness. Fig.4 is a typical example of an actual
fan blade tested under simulated bird ingestion condition
corresponding to “Take-off” phase. One can clearly identify
the bending and twisting components of total blade
deflection which reduces the impact load translated as axial
thrust load on the fan bearing. The exact magnitude, its
time wvariant and peak value cannot be estimated by
conventional methodologies, and only experimental
measurements on engines or use of impact software will
enable the estimation of these transient parameters.
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DYTRAN AMALYSIS

one of the Lagrangian—Eulerian explicit impact codes,
\DYTRAN’, has been used to simulate the “slice-up” and
*squash-up” processes. in the proper seguence for the
critical flight condition at the tip of the blade. For the
assumed length-to-diameter (L/D) ratio of the cylindrical
shape of the bird, three consecutive blades are impacted by
 the bird debris and the deflection pattern, 0.33ms after the
initial contact, is shown in Fig.5. Stress pattern under the
combined influence of centrifugal load and time dependent
bird ‘squash-up’ phenocmenon is shown in Fig.6. The DYTRAN
software predicts the pre-set failure criteria which in the
case of fan blades could either be ‘percentage strain’ in
the failure region oOr the magnitude of tip deflection.
(Fig.7) While these are common features of impact codes, one
can also extract the blade-root reaction along predetermined
reference coordinates as a function of time elapsed.
Assuming that the rotor, on which the blades are mounted, 1is
an infinitely rigid rotating body transferring the axial
component of impact forces on the bearing, through the
connecting main shaft without any attenuation, one can
predict the time variant of pird-strike related thrust loads
on the bearings. Figs. 8, 9 and 10 are typical time
transients of impact forces transmitted to the bearings
through ‘bird squash-up’ on three consecutive rotor blades.
superposing and summing up on time scale the resultant axial
force on the front thrust bearing of the engine, we get the
typical upper bound values for time-force relation shown in
Figs. 11 and 12. It is evident that the bird strike at the
tip of the plade normally results in thrust reversals in
very short time interval of a few milli-seconds. The
magnitude of these axial forces may vary from +1700 kgf to
-2000 kgf. It is only logical to expect large birds of
1.8 kgf weight to impart much higher axial forces, but in
practice the magnitude does not increase in direct
proportion to weight of the pird. The increase in axial
force on the bearing is due to the larger number of blades
chopping down the cylindrical shaped bilrd, for a given L/D
ratio and relative orientation of bird.

One more critical situation, in relation to axial force on
the bearing, is the impact of large bird at the root of the
blades at high forward speed condition. Being stiffer at the
root, the blades are likely to transfer higher forces to the
pearings, but the pird mass impacting each blade at the root
is smaller. The relative angle of impact on the aerofoil and
the wvelocity are different from those corresponding to the
tip hit. The trade-off amongst these various parameters
result in additional critical flight conditions which can be
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identified very effectively wusing impact codes such as
DYTRAN.

CONCLUSIONS

Dytran software has been used to predict the axial thrust
load on aeroengine bearings. In a typical blade-tip bird
strike case, at take-off condition by a medium size bird,
thrust reversals of magnitude equal to approximately 2
tonnes have been predicted.
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WITH A FRONT THRUST BEARING
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WATRCRAFT-SPECIFIC” FOD CERTIFICATION: NEED
FOR A RELOOK AT MIL-STANDARD REQUIREMENTS
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SUMMARY

: ) :
h This paper addresses the issue of severity of impact damage
; , _ due to Bird-Strike wunder the present provisions of Mil-
) ' standard 5007 D/E. The need for reviewing the standards with
' reference to failure modes in Aircraft-Fuselage-mounted
. aeroengines has been explained. Influence of strike on air-
5 intake on bird shape parameters is discussed.

y Key Words: Engineering, Engines, certification Standards,

Airframe
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