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ABSTRACT

atistics are widely perceived as the primary instru-
yring the hazard and evaluating risk on individual
wever, those currently in use are not very informa-
susceptible to variations in reporting stan-
7 goal of bird control on aerodromes should no®
birdstrikes but to minimize the likelihood of
results in damage to the aircraft. A minimum ac-
for bird control has not been formally defined
‘proposed in this paper forms the basis for dis-
m considered here is that of estimating the
ons between aircraft and birds to observe on
control the risks of erroneous judgments on the
flying time between successive birdstrikes),
s birdstrike hazard. (It is assumed that an
irdstrikes is a realization of a Poisson pro-
ive example is given.




1. INTRODUCTION

The research worker and statistician frequently deal with phen"
ena in which events of some type occur randomly in-time. The F
gsson process is the formal model of such phenomena.

TPhe results of any experiment in which observation is performed
contintiously and "events" (i.e., occurrences of any specified
kind) are tallied, can always be described by a function x=x(%
which gives the number of events observed, x, during the first
units of observation, for all values of t from O through T, th
total amount of observation performed. Such an experiment, yie
ding an observed function x(%), is a Poisson process 1f the
events occur randomly in the sense of the following natural
nition: given that any number x of events are observed in any
amount t of observation, the points of occcurrence of the x eve
are ragdomly (i.e., independently uniformly) distribubed betw
0O and ©.

An example in which the Poisson process is a very accurate and
useful model is an observed series of birdstrikes.

A Poisson process can be characterized in the following two
le alternative and equivalent ways:

(a) The "waiting times" w between successive events are inde
dently distributed with the exponential density function

£w) = (1/8)e™® , w=o0.
Here © is the mean of waiting times:

E(w) 0.

(b) The increment y=x(t,)-x(t4) of x(t) on any inbterval of
1=to-t4 has the Poisson distribution

p(y) = e Tl b Dignsese e

and the increments of x(t) on non-overlapping intervals
pendent. Here gl is the mean increment on an interval of
1. Thus g is the mean rate of occurrences, and g=1/8.

All statistical questions concerning Poisson processes inv
inferences sbout the value of the single parameter g or @
process, or about the values of the respective parameters
veral processes.

Methods for determining whether a given process is Poisson
not be discussed here; Lewis (1965) describes and applies
ral methods.




2, THE MEAN FLYING TIME BETWEEN SUCCESSIVE BIRDSTRIKES (MFTBSB)
vith phenom- g
le. The Poi- e model of the flying time between successive b

irdstrikes is gi-
en by the exponential density (it is assumed that an observed
ries of birdstrikes is a realization of a Poisson Drocess):
peiformed o
ecified Ee oy -W
he first &
gh T, the 8 W is the f1
ent, yiel— tTue, unlmown MPTBSE, Tt is well known (Epstein and Sobel,
f the 02295 Nechval, 1984) that if we set g risk of of rejecting the
tural defi- L hypothesis ©=0, (the acceptable value of MFTBSB) when
i & risk B of accepting ©=68, when actually ©=8,; (the wnac
¢ of MFTBSB), where Su=<86,, then the D
or the operating charac%eristic curves

and hence the
of collisions between aircraft and birds (birdstrikes) s
obtained from

w=0,

true,

= X3_p(29)/X2(28) (5)
s two simii _ ;

((28) 1is the lower X probability level and'X2 (28) 1is the

°2ability level of the chi-square digbeiNitBe2 with s
freedom (4.f.). Thus, given ©
nd B at the levels

is willing to take
dstrikes

- indepen—
n

» Oy and setting the
of probabiligy desired or at the

: ]

from the tables of
SQuare distribution.

 l_to obtain an analytic solut

Liferty (1931) transformation

ion we consider here
l0rmal variste, i.e. obtai

of chi-gquare to an ap-
ning for r=2s 4.f, the rela-

L= 2/090) + z,_ga/o/(9r))3

93) * 2, n\/1/(9s))> o
/(98) + 2,7/1/(98))>

he lower X probability level of the standard normal
£1_B is the upper B level.

£ the quantities Oay O o, P and s known, there-
fifth quantity may be found from (7). Solving

_ 4(h-1)2

L
= (8)
zq—z1_p)2+4(h-1 )22 9(a/e2ssm0)?
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where
n= (8,03
and

c = (zq_p—hzop/(h—1).

Note that the values of s in (8) are in close agreement with
respective values in Table II of the Epstein-Sobel (1953) pa
when the values of (8) are rounded upward to the next intege
The following table gives comparisons for some selected valu
o and 8.

TABLE 1., Values of Number Birdstrikes, s, Required

é 75 0=0.01, P=0.05 ®=0.05, P=0.05 0=0.10, p”
SR E-S (8) E-S (8)

5/ 98.7 67 66,3
2 35 4.7 23 23.0

21 20.3 14 13.3

3 15 4.4 10 9.4

4 10 9.4 7 641

5 8 Tos2 5 4.6

10 & 3.9 3 2.5

E-S = Epstein-Sobel s (8) = s from formula (8)

3. EXAMPLE

Suppose we would like to test some fleet of airplanes %o

ne whether as a class they have the MFTBSB of, say, 600 fl
hours or the METBSB of only 300 flying hours. We set a ri
5% of rejecting the null hypothesis (MFTBSB = 600 flying hour
when true, and a risk of 10% of accepting the hypothesis
(MFTBSB = 600 flying hours) when actually the true (unknown)

MFTBSB is only 300 flying hours. Then our basic data would
sist of the following:

o = 065, B = 0-10,
ZC( = = .645, Z,]_ﬁ = 1.282,

' S5 X ‘
0,/0, =2, h=2">o1.259.

From formula (8)




0.2702

9(~3. 35464+A/11. 255340 . 2702) 2

 take $=19, the number of birdstrikes required for the indica-
0 protection.

- 6X,(25)/(25) = 600X2(38)/36 = 395 £1ying howrs. (13)

¢t the hypothesis that MFTBSB = 600 flying hours and ac-
he alternative hypothesis that MFTBSB — 300 flying hours if
S€rved B <393 flying hours.
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