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ABSTRACT

* radar returns from birds is an interesting but ra-

d area of practical importance to radar operations,
collisions between birds and aircraft, and environ-—

ing, as well as to the subject of ornithology it—

t radar returns from birds should not always be
as spurious signals to be eliminated from survei-
plays, but as useful signals to be made available
y in combating bird hazards and in environmental

is view, however, does not seem to be widely accep-
radar engineers. Tests have shown that radar re-
can be readily distinguished from radar returns
es and aircraft. With experience, an observer can
birds from small birds and perhaps make more
ns, This paper is concerned with the problem of
fication of radar clutter into one of several
ding airborne birds, bats, insects, weather, and
well as the corrupting background noise. The
ated into two parts. The first part, the pro-
e, is to decide whether the received gignal is
(corresponding to the presence of any of va-
ar clubber corrupted by the background noise)
onding to the presence of radar clutter
g background noise only). Noise is assumed
whose covariance matrix is totally unknown.
he discrimination between various types of
by the background noise, i.e. classifica-
nto one of several categories. A solution
en presented in Nechval %1991) and will not
adar detection procedures involve the co-
ignal amplitude to a threshold. The te-
s paper allows one to find a detectilon
s a constant false-alarm rate (CFAR) in the
shanges in the noise background.
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1. INTRODUCTION

The task of primary radars used in air traffic control is to de-
tect all objects within the area of observation and to estimate
their positional coordinates. Generally speaking, target detec-
tion would be an easy btask if the echoing objects were located in
front of an otherwise clear or empty background. In such a case
the echo signal can simply be compared with a fixed threshold,
and targets are detected whenever the signal exceeds this thresh-
old. In real radar application, however, the target practically
always sppears before a background filled (mostly in a complica-
ted manner) with point, area, or extended clutter. Frequently

the location of this background clutter is additionally subject
to variations in time and position. This fact calls for adaptive
signal processing technigues operating with a variable debtection
threshold to be determined in accordance to the local clutter si=
tuation. In order to obtain the needed local clutter information,
a certain environment defined by a window around the radar test

cell must be analyzed.

'abtﬁaily ur

available
, approximate

Usually the background reflectors, undesired as they are from
the standpoint of detection and tracking, are denoted by the ter:m
nelutter", and in the design of the signal processing circuits
the agsumption is made that this clutter is uniformly distributed
over the entire environment. Signal processing ie designed so
that, whenever possible, target reports are received from useful
targets only, rather than from background reflectors.

In practice, however, clutter phenomena may be caused by a n
of different sources (such as airborne birds, bats, insects, 0
small clouds or other meteorological structures) . Improvements
target detection and clutter suppression over the present st
of the art can be effected only by removing the gimplifying
sumptions step by step and introducing a mo |
of argumentation. Ultimately it may become nec
clutter regions of differing clutter type and
properties such as type, size and borders, power, and spectr
features rather than trying to suppress and ignore them at an
early stage of signal processing. Thus for discriminating tar
(such as aircraft% from clutter, it might be useful to build
complete "image" of the clutter situation encountered in the

rall observation space.

Unfortunately, real-time information on airborne hazards to al
craft, such as birds and storm systems, is also suppressed. T
ability to classify clutter and hence identify these hazards
thus contribute significantly to air traffic safety.

These ideas reflect a trend presently observed in radar sign
processing philosophy, a trend to regard the problem of targe
detection and clutter suppression more and more s&s a problem
image processing and image analysis. The procedure oublined in
the following is one of steps in this direction.

In a radar system, the detection of signals in a background of
stationary noise usually involves the comparison of a statist
based on samples of signal plus noise, with a congtant threshe
that is determined from the noise-only probability distribu
The threshold is chosen so that a specified false—alarm pro
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%ity 1s achieved, using the so-called Neyman~Pearson criterion.

nfortunately, in most cases the threshold depends on parameters
is to de- 0f the noise-only distribution and, in practice, these parameters
estimate are actually unknown. If these barameters can be estimated from
eg deteg—i the available data, then the threshold can be determined (at le-
chogacgse R 8% approximately) from the estimated parameters,
ﬁgshgtd,sh_ In a nonhomogeneous noise environment in which the average noise
gic ﬁi Wer varies In an unknown manner, it is impossible to maintain
agompﬁicg- constant false-alarm rate using a fixed detection threshold.
quently order t0 maintain a constant false-alarm rate (CFAR), it is
y subject Ssary to utilize an adaptive threshold which can adjust to
r adaptive ¥ing noise levels.
c?iﬁggzigg—: baper is concerned with the problem of statistical classifi-
nformation, on of radar clutter into one of several categories, including
adar test ne birds, bats, insects, weather, and target classes, as
_8s the corrupting background noise. The problem can be sepa-
d into two parts. The first part, the problem focused on he—
re from 60 decide whether the received signal is a signal plus
by the term “(corresponding to the presence of any of various types of
cirecuits | glutter corrupted by the background noise) or noise alone
distributed

gned so
rom useful

ponding to the presence of radar clutter including the

s agsumed to be Gaussi-

unknown. The second

types of radar clutter
i noise, i.e. classification of radar
by a number O one of several categories, including airborne birds,

sects, or ts, weather, and target classes, if the received sig-
yvements in Signal plus noise. The process of classification can be
' zed as follows. The unprocessed radar data is passed thro-
€ extractor, which transforms the available data sam-
. Set of separable features. These features are derived
flection coefficients computed using the multisegment
Burg's formula (Kay and Makhoul, 1983; Stehwien and
The aforementioned coefficients (that contain all
rmation, including the mean doppler shift) are then
and grouped to satisfy the requirements for multiva-
0 behaviour. Only information which is different
) class is maintained, and in such a form that a re-
31 based on a discriminant function derived from
ures, may be made. A solution to this problem has
n Nechval (1991) and will not be considered fur-

his paper is to present the procedure which al-
~a detection threshold that achieves a fixed pro-
alarm which is invariant to intensity changes

kground .

“ﬁ -+ ,Z(n)) be a random sample formed of n in-
entically distributed clutter observations. On

Servations we are to decide which of the
is true:

ne hypothesisg):




1

o —

2(1) = 2°(4) = (Z2(1), ... »28(i)) ~N(0,Q), 1=1(1)n, (1) =
where Q is the unknown covariance matrix;
e 0
H, (the signal-plus-noise hypothesis): fore IQ‘ #
Z = (Z('I)s =

7(i) = Z°(i) + bS(1), 1=1(1)n, (2).

where Z°(i) is the vector representing all sources of noise-—only

processes,

: is the signal pattern (an n-element row vector), and of © defir

| L ) H. = (b,QE

i b= (b1 g e ,bp) (!-I'j '. (0] ( ’Q)
b

f is a (p x 1) vector of unknown signal intensities corresponding
' to the p features of the signal, respectively. [

3, THE MAXIMUM TLIXELIHOOD RATIO TEST

In order to distinguish the two hypotheses (Hg and H4) the maxi=
mum likelihood ratio testing procedure is used, where the proba-
bility density function of the sample data is maximized over
unknown parameters, separately for each of the two hypothese
The ratio of these maxima is the detection statistic, and the
pothesis whose probability density function is in the numerato
is accepted as btrue if it exceeds some preassigned threshold.
maximizing parameter values are, by definition, the maximun 11
1ihood estimators of these parameters, hence the maximized pro
bility functions are obtained by replacing the unknown paramet

by their maximum likelihood estimators.

‘maximum 1i
m
0E

s best described by a

The maximum likelihood ratio principle 1
7 with a parameter

kelihood ratio defined on some sample space
set 8. Since

Q = EC(Z(1)=E(Z(1)))(Z(1)-EZEIN )

is the unknown covariance mabtrix of random vector Z(i) for i=1,
21 eyl Ghenifon the current problem '

S e { 8=(b,Q) :Q:.--O}
and the likelihood function is
11

L(Z:8) =

: i :
. exp [__2_ nq(Z(i)—-E(Z(i)))'Q_'](Z(i)_E(Z(i)))] 3
= ]

.
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1 1
= exp[- -—Tr(q""(z—E(z))(z-E(Z))')] y
251.111)/2 , Ql n/2 e )

Where | Q| £ 0 is the determinant of Q and
(2) Y clOAGH »2(n)) (8)

1se-only E .aepf}éngt?ggflx of vector data Z(i) and Tr denotes the matrix

b

(3) L6t W° be the region in the parameter space & specified by the H,
4 thesis, then in terms of the complementary subsets w° and
' of O define the alternative hypotheses Ho and Hq as follows:

() Hy = (b,@)EW°  ang Hy = (b,Q€E6 - we, (9)

::{(o,Q):Q:o} ; (10)
e - {(b,q):Q:a-o, b,-éo} s : (11)

maxinum likelihood ratio test is given by

max L(Z;8)
BEE - §o = c, then H1

max L(Z;8) < ¢, then HO
BEwW®

is the threshold of test.

shown that

1
L(Z;0) = exp(~- np/2)
2{]‘_1113/2 lébl n/2

1
) =
_am.np/2 léol n/2

BXP(—HP/E) 7

((d)/n = (1/n)zz°,

)=bS(1))(2(1)-BS(1)) */n




78"
e “7)

ss’

are the well-known maximumn 1ikelihood estimators of the unknown
b under the hypotheses Ho and Hq, respectively.

parameters Q and |
Thus a substitution of (13) and (14) into (12) yields the maximul

1ikelihood ratio test
‘6,0|n/2 = C, then H,

TREZ) =i
lébln/2 < Cp then Hy -

(18)

Taking the n/2th root, this test is evidently equivalent to

0yl = k, then H,

IR(Z) =
< k, then Hj (19)

| &l
where kec2/P. A substitution of (15), (16), and (17) into (19)
produces the explicit test

. |2z > k, thenH,
LR(Z) = y —
. (z8°)(z8) < k, thenHj. (20)
2% - ————
Ss

£y (20) note first that the inverse of 22° is
th probability one in the last paragraph of
pendix. Thus the test ratio in (20) can be considerably simpli
ed by factoring out the determinant of the p x p matrix 77 in
the denominator to obtain this ratio in the form

To further simpli
shown to exist wi

22|

78°)(28")’
|22 lI Ly e (—-—--)—(-——)- (z2")

LR(Z)
-1/2

S5

1

(28"’ (22" (28"
A=
ag’

The last equation follows from a well-known determinant ide
Clearly the test in (21) is equivalent finally to the test

(28 (22 ) 1(@88") = Wy thenHy

W(Z) = =
SS <= Wy, then HO'

CFAR test for a signal with unknown rele

The result (22) is a
ing to the p features, respectively.

intensities correspond
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‘test under the assumption of unknown background clutter statis—
has the CFAR property that the probability of a false alarm
ts equivalent, the probability of signal detection, given the
or noise-only hypothesis Hg, is independent of the actual

ance matrix of the data. If p=1, the resulting test reduces
¢ standard normalized matched filter test for finding a sig-
in clutter of unknown and varying intensity.

er to find the probability density function of the test W
) on both hypotheses Ho and Hq, one assumes the b and Q are
0 and start by noting that

for 1=0,1. (23)
E(Z°(i)) = O (24)
E(Z°(1)+bS(1)) (25)
and E(Z;Hq) (26)
orm a whitening procedure on Z(1) by defining

B (), for 11,2, ... \n, (27)

Wew X)) = g~17/2g, (28)

rocedure in (27) and the assumption that Zg(i),

» are mutually independent produce the re ult
(£)) = a(g,s)d(i,r) - (29)

s+ yP and i,r=1,2, ... ,n. Here d(i,r) is the Kro-
unction defined by

(30)

- otherwise

.Iﬂth_element of vector Y(i). Then by (26) to (30)
(31)
(32)

for 1=0,1, (33)




where Ip is the p x p identity matrix.

Evidently by the transformation in (28) the test function in
becomes

(s (rx ) N1s’) = Wy then Hy
W =

ss’ < Wy, ‘then Hy.

Since SS° is a positive scalar, at this point it simplifies mai
ters to normalize the signal vector S by letting

S

S, = ;
(ss”H)1/2

Then the test function in (34) becomes, using (35),
W = (YSQ)'(YY‘)'“(YS%).

By (35) the sum-of-squares norm of Sq is given by I sqll =1.
ce, 51 is a unit row vector in the "direction" of vector S.

Now consider the n x n orthonormal matrix

S
= ( 1)

M
where M is a (n-1) x n matrix, composed of some set of orth
mal row vectors, and such that

S’IM = 0.

Hence the matrix U carries out rotations in n—-dimensional
in such a manner that unit vector 54 is transformed into th

unit vector,

1U’ SN0, H O

Now apply transformation U to ¥ by letting
¥o= Y07 = ((V@)LNE2)5 e yWiln))e

Then the test function W in (36) reduces %o
W= v vy,

Tor more details on how U acts upon signal Sq and Z or i
Hq, see Appendix.

S

The covariance matrix of V(i), for i=1,2, ... ,n, is simi
that of Y(i), the only change of the statistlcs of the V
that of the Y(i) is their mean values under hypothesis Hq.
mean is derived from
E(V3H,) = E(YU";H,)

Q‘“’zbsqu’(ss’)1/2 =




= """1/2 ~ 1/2
1 in (22). = Q DETRO,: . 0)(SS D)

B evms7)172,0, ... ,0): (42)

on (29) and (42) a figure of merit or what might be termed the
(34) tneralized signal-to-noise ratio (GSNR) is developed as follows:

es mat- (V" (1)3H)ECV(1)5H,)

= (b’ w)||s|P £ a. (43)

onsider a further simplification of the test function W in
First separate matrix V into two parts, V=(V(1),X) and
» »+- ,V(n)), in such a manner that

= VDV (1) + ;n V(L)V (1)

BT (1)V (1) + D. (44)

1 n =
= Q(i)v (i) (45)

ingular p x p matrix, since n-1=p and D is obviously
ributed (see Appendix for more, but similar, deta-

10Wn matrix inversion identity applied to (44) produces

SNV (1) + D)~

D~ W)V’ (1)

14+ V(1) V(1)

to £ind the probability density, f£(wq;Hq), of
reexpress (48) in the form




Ve s V(1)
_...——(XX e amr ety .
|lvenll flveoll |

Then normalize the p-component vector V(1) as follows:

v(1)
|fven)l
Hence by (50) one obtains Wq in (49) in the form
W, = |[venl[Par oy ) =||vli%g
where

q = Anex YA,

W, = ||ven)|@

A(1) =

Now one can further process the term g in (52) by conditionir
the elements of V(1) so that A(1) can be treated as a norma
constant vector. Then since A(1) has unity magnitude, there
exists a p x p orthonormal matrix U4 such that (see also Muir-
head (1982))

uAC(D) = (1,0, ... S0

Next apply this transformation to matrix X, defined before
by letting '

H = U1X = Uq(V(Z), S GRS
Then the term g in (52) has the simple form,
g = A(NxXHTTAM)
(10, v nO)EEO R0 O s R O) .

Clearly H in (54) has exactly the same statistical properti
X under the assumption that V(1) is given.

Now partition H as follows:
iy
HE—

Hp

where Hp is the (n-1)-column vector and HB is the (p-1) X
matrix. Then

» - -1 j
HpHy  HpHp Hyn  Hpp

6:1: 0 YL
HpH,  HpHy Hpa  Hpp

According to the Frobenius relations (Muirhead, 1982) for
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titioned matrix

’ o P —.’[ —“'
Spp = CHpHy — HpHp(HHD " HoH))

(B (T - By (g " HOm, )~
1 1

. ’ l.-.’] #
Hy(I - Hy(HgHp) ™ Hp)H, HyRH,

bitution of (57) and (58) into (55) yields
1

perator such that R2=R
ow that R has n-p unity
Thus R can be diagonalized

(60)

sumption that V(1) and R are given, one finds also
1[dom variable

n-p

. 2
h’h = kg (61)

defined in (59), and
(62)

0 vector with the last (p-1) components equal to
nal joint probability density function of the
Zer0 elements of h isg subject to the normal densi-

In._p 3 i-e.,

(63)

:) in (63) does not depend on V(1) and R, so that
must be statistically independent of the vector
Hence 1/q in (61) is chi-squared distributed.

9) one obtains the ratio W1 in the form

D
' nZ. (64)

-
2
(1)
=

1

ce of vectors h and V(1), one has the proba-
(see Miller (1964))
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TC%) wgp/z)-d
£ a
22 Fch'g’ﬁ T+w )

f(wq;Hq) = e = 1 ;
T(ER)TE) (4w )™
= f(wq;p,n-p,é1/2)
where

of Wq in (48) under hypothesis Hq. for 0<w1 <o , |
1F1(a",b",x) is the confluent hypergeometric function. This is &
noncentral f-distribution (Rao, 1965). The value 4 in Miller

(1964) is given by
a =llE(V(1);H1)“2.
This agrees with the definition of the GSNR, &, given in (43).

Finally by using
1ity density function of the test function W under hypothesis

is given by
sk woobeadyobag SDUESD np awy _ pey,2
f(wqu) = @ B(Wiz'; > ) 1F1(2|23?) = B(WsE! 5

for O<w=1. This says that W is subject to a noncentral beta-
distribution. Clearly, if no signal is present, then a=0. T
(67) reduces in the Ho hypothesis to a standard beta~function

density of form

=1
p(wily) = BERER) — w(PB/2 (1=w) (P2)/2 | g <w <.

Finally, in terms of the above probability densify functions
(67) and (68) the probability of a false alarm is found by

1
Yo
and the probability of detection by

1
P. = £(w;H,)aw.

Yo

APPENDIX

Properties of Orthogonal Matrix U

To see explicitly how orthonormal transformation U in (37) ¢
upon the normalized version 59 of signal S in (3) and data
Z under H4, the signal-plus-noise situation, let
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Z.-e b'ls'l + 2Z° - (AT

qub(SS')"/a, quS(SS')_Vz, and Z° is data matrix Z when
0 or hypothesis Hp is true. Since

(65) ;s-,]_u‘ - S,,(S:,,M') = (sqs,;,sqm') = (450, s 50, (A2)

a multiplication of Z in (A1) on the right by U’ yields
1is is a

ller < . (byS4 + 2°) (S;.M')

= (08, + 2°)85, (b8, + 2°)M°)
BN, 7°S),7°07). (A3)

Ly the action of U on Z is %o gend signal bqSq to
) +++ ,0) plus a noise term Z°Sq into the first column only
ransformed data mabtrix V4. The remaining n-1 columns of
°M", constitute a signal-free p x (n-1) matrix from

= t is shown next, an estimator of the covariance matrix
e Tound.

te by the definition of V; and U that
= 2(8;,M°) (s7,M°) 2’
287)(787) " + (") (zm")".
f"H,I by (A3) one has
184 + 2°)55,2°M°) ((byS, + 2°)57,2°M°)°
151 + 22)87) (b8, + 2°)57)°
M‘)(ZOM')’
287)° + (z°M)(z°M")". (45)
ties (A4) to (A5) evidently establish the follo-

(ZM7)(zou")
= 22° - (28;)(zs))" 2 a. (46)

value of the left side of (A6) yields, by the
dence of the columns of Z,

E((z°M)(Z°M) ) = (n-1)Q (A7)
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where @ is p x p covariance matrix of the discrete vector proq¢

7(i). This result shows that

e :
Q = — (@an(z)
n—1

is an unbiased estimator of Q with (n-1) degrees of freedom
both of the noise-only and signal- lus-noise hypotheses HQ &
Hq, respectively. Note finally by (Cramer, 1958

n>p that the r=(1/2)p(p+1), distinet elements of Q

Wishart distributed over the r—dimensional space of positive
finite matrices. Hence Q in (A8) is positive definite with pr
bility one.

The inverse of 7%’ can be shown explicitly to likewise exist by
noting the following:

72" = G + (287)(28))" = (T + (zs,;)(zs,])’a"")e 2 xa.

Evidently 22  is invertible since clearly both factors g7 and
G-1 exist with probability one.
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