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STETIART

predicting the number of accidents and serious in-
il sircraft due to bird strikes during a future ti-
the gpecified number of aircraft movements, kno-
and zericus incidents éuring time intervals {with
~unoers of aircralt movements, respectively) in the
bozsldﬂred It is kncwn that in many familiar situabi-
oz, The Hiedlctlve estimators bascd on the principles of maximum
linood and of sininunm variance untiased estimation are uni-
uworst among all predictlive estimators which one would con-
asing. In this paper, we suggest (as a particular possibi-
. i Lrne use of uniformly undominated predictive estimators and
J*vo the nconditions that a predictive estimator must satisfy in
order tnat it be uniformly undominated. It 1ls assumed that acei-
donts ard gerious incidentis to eivil aircraft due to bird stri-
kes foilow a binomial distribution. An illustrative example is
pregsented.
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2 | (NTRODUCTION

t The binomial model can be widely used to describe the distributi-

on of the number of accidents and serious incidents to civil air-
eraft due to bird strikeg in a fubure Hime period with the speci-
fied number of aircraft movements. Here "serious™ has been defi-

ned as: (a) loss of life, (b) injury to occupants, (¢) destructi-

onof aircraft, (d) damage/loss/shutdown of more than one engine,
{e) wncontained engine failure, (£f) fire, (g) significant sized
Iole eg shattered radome, holed windscreen, holed wing, (h) major

| structural damage, (i) particularly unusual or dangecrous features
¢ complete obscuring of visicn, multiple loss of system, demage

to helicopter blades or transmissions. The paper of J. Thorpe
(1982) contains brief details of accidents and serious incidents
due o bird strikes world wide wup to and including 1980,

| Whatever may be the reasons for adopting a binomial model, having
} decided %o accept such a model, results derived in this paper

t ®ill be found appropriate. In practice, the truec parameter of the
b bincmial distribution is not known, and the inference nusi be ba-

sed on the observed bird strike data during certain time periods

p 7ith the known numbers of aircraft movements, respectively.

One of the problems considered here is o0 prediet the number of

- gecldents and serious incidents to civil aircraft due fo bird

strikes during a fubure time period with the specified number of
gircraft movements, knowing accidents and sericus incidents du-
ring time intervals (with the ¥nown numbers of aircraft movements,

| respectively) in the past.

2. PROBLEM STATEMENT

j Frequently one is interested in estimating the value of a random
b variable rather than that of a paramefer. & customary method for

this is to estimate the expectation of “he random variable (a
varameter) and then to "identify" the variable and its expectati-

b on; 1.e., to use the estimate of the expectation as a prediction
b for the variable. As we shall see below one is led to this proce-
. dure 1f one adopts the point of view of unbiased estimation, so0

that from this point of view predicbion poses no new problem.

| Ihis however is no longer true when one employs the principle of

miform wdomination (see, in this connectiocn, Heehwval (4988)).

| (onsider a pair ¥,Y of random variables having a joint distribu-

tion By (with ©E€9°(parameter space)) helonging to a parametric

| family P° of distributions. It is desired te use the observed X

to predict, say, g(Y) where g is a some function of Y. If the

-:. velue x of ¥ is observed one makes an predictive estimate, say
| 4(x), and thereby incurs a loss of WCg(y),d(x)]. We shall assume

that the loss function is nonnegative. Tt then follows that the

| expectation of the loss will always exist (2lthough it may be

infinite).

b The risk associated with the vredictive estimator (decision ru-

le) d(X) is defined to be the expected loss, as given by
Rg(d) = Eg (WEg(¥),d(X)]) . <

- The choice of predictive estimator, 4(X), should then be made
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igion rule d* such thet its risk function Rgl(d*),

lim fQ{qs,i‘) - Q(QS,dS)? = 0, (2)
e e
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e
ther d* is sn uniformly undominated predictive decision rule.
Proof. Suppose d4* is uniformly dominated. Then there exists s

procgictive decision ruie d” such that Rg(d")=Re(d*) for all
feE9% Let

e = inf ERe(d*} - Re(d”)] = 0. (#)
oen’
Tiien
(0,47 = Qlag,d™) = e (5)
3imultaneously,
@(g,.d") = Qleg,d ) 2 O, (6)

5=1,2, +».. , and

lin £Q{q,,d"™) - Qlag,d.)] 2= O. )

5 ——
On the other hand,
alq,,4") — Qlag.dy) = Falgg,a%) ~ Qla,,d 00 - TQlgg,a%)

- alg,,aM7 < £0(g,,a") ~ 8lag,d,)] - e (®
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Thig contradiction proves that d* is an uniformly undominated

. predictive decision rule.

b forollary 2.1.71. A Rayes predictive decision rule,whose risk furn-
. p

¢tlon 1ig constant, is an uniformly undominaced predictive declsi-

L o0 rule.

L Suppose now that X and Y are independent and that

Woe(y),d(x)] = Cely) - a1, (10)

 Consider the problem first from the point of wview of unblased-

ness. & prediction could reasonably be called unbiased if

Ee(d(x)) = Ee(gCY)) . (’H)

| Suwbject to unbiasedness, the risk is given by

B,(Cg(T) - a(x)7%) = Varg(s(D)) + Varg(alx)). (12}

L But Vars(2(Y)) is a known function of €, and hence tine proolem of

minimizgng (for a particular ©) the expected squared error redu-

| ces to that of finding an unbiased estimate of Eg(g(¥)) with mi-
' nimm variance abt 8. In a similar way one sees, without any res-

triction to unbiased predictions, that the Bayes prediction for
g(1) is the same as the Bayes estimation for Eg(g(Y)). One might
expect that as in the unbiased theory the predictive egtimate

| will coincide with the unbiased estimabe. This however is not
 the case since the prior distributiens that give constant risk

in the two cases will usually be distinet. In fact the two prot-

b jens are rather different in that the '"least favouravle" prior

| distribution for the prediction problem must not only take inte
| gecount the difficulty of finding the correct value of © for va-
 rious prior distribubions but also the aifficulty of predicting
b g(Y) when © is known.

Te main purpose of the present paper is to obtain uniformly ur-
fominated predictive estimators for a number of specific vrod-

L lems,

- 3, FREDICTION OF THE NUMRBER OF ACCIDENTS AND SHERIOUS THCIDENTS

TG CivliL ATRCRAFT DUE TO BIRD STRIKES

' fonsider an ornithological situation in which accidents and sc-
. rioug incidents to civil aircraft due to bird strikes follow a

binomial distribution with parameter p. The situation is under

- ghservation for time interval with the known number mq of air-

craft movements, where X(mq) of accidents and serious incidents
s recorded. In some futurc time interval with the specified

mmber of aircraft movements mp, the number of accidents and se-
rious incidents is denoted by Y(mp). The specific prodblem is bo

| predict the value of a random variable Y{mp) observing a randon
. variable X(m,4), where X(m,) and Y(mn) have the probability dist-
b ributions
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¥ on the basis of ob-
servations of Xq,%Xs, ... ,Xp. Since at tue kih stage we know the
values of pandom variables Xa(mq), ... X {m) and Xk is suffici-
snt, for p, it is sufficient to predict the values of

e want to predict the random variable Xp

N+
Yoom o2 4{wmy), k=1(0m, (17)
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on the basis of Xy. Let dg=d (X)) be a kth predictive egstimator
{decision rule) for Yy and ietb %he loss function be
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(1) . t- Eckﬂkok' @7
ob— (th) is constantly equal %o & (i.e., (24) is independent on D)
the & gnever
fici- S :-%-o0. (28)
It can be shown that (21) is the Bayes solution corresponding to
(17) B the prior distribution of D,
: . 3 - -
tor 4 q(p;a,b,l = I'I'aa;bb pa ’l(,]__p}b /ls O=p=1 (a,b= G, (29}
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-5 Swpose that {a*,b*) is a solution of equation (28). It follows
(19) L fron Corollary 2.7.1 that (21) with
(20) it a*
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f {s the uniforuly undominated decision rule for 7.
(21) f Tor example, in the case n=1, tne uniformly undominated predicti-

 ve estimator of Y:Xg(mg) based on X=Xq{mq) with respect to the
f loss function



§0v,8.0 = o FY - 4,0° (32)

Sy G 1
x \ A
&, = m2(ﬂ1 5; + b.J, (33}
wWiero
m,
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Note that (%%) is tne Bayes solution corresponding to the prior
digtribution of p (29) with

a~ = b* = (m1/2)((1~a1)/81) (7€)
and hnence uniformly undominated.
It is intercsting to compare the risk of the above uniformly un-

Jominated predictive estimator (%3) with that of the standard
witiased estimator
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I, say, m,I:’FO,OOO and m,=156,463 of airceraft movements, then

1/e

2 /2 = 0.0%96188.

(42)

 Thus the standard unbiased estimator dg (37) is bevter than the

f miformly undominated predictive estimator d4q (33) if and only if

2)

53) ., m i /! -
1.2 1(q e (— b = -

{[].,I +m2 I'[L_T-—‘} *_"‘11 m2

34

350 S o- 4| = o.059188.
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